

STUDENT CODE:

Task 1

13% of the total

An environmentally friendly aldol condensation

1a	1b	1c	1d	1e	1f	1g	Total
1	1	13	20	6	1	2	44

- **a)** <u>Record</u> the pH of the solution.
- **b)** <u>Report</u> the mass of the crude product.
- c) Using UV light to visualize, <u>draw around</u> the spots on the plate in pencil to show where they are, <u>copy</u> your plate onto the answer sheet, and <u>place</u> your plate in the Ziploc bag labeled with your student code.

<u>Record</u> the relevant R_F values.

Chemical	R _F

STUDENT CODE:

d) <u>Report</u> the mass of the purified product.

e) Product A could have one of two formulae: $C_{18}H_{18}O_4$ or $C_{18}H_{16}O_3$.

<u>Draw</u> the structure of every stereoisomer with formula $C_{18}H_{18}O_4$ that could be formed in this reaction. <u>Indicate</u> how many peaks you would expect in total in the ¹³C NMR spectrum of each.

For C₁₈H₁₈O₄ :

Structure	Number of ¹³ C NMR signals expected:

STUDENT CODE:

<u>Draw</u> the structure of every stereoisomer with formula $C_{18}H_{16}O_3$ that could be formed in this reaction. <u>Indicate</u> how many peaks you would expect in total in the ¹³C NMR spectrum of each.

For $C_{18}H_{16}O_3$:

Structure	Number of ¹³ C NMR signals expected:

STUDENT CODE:

f) With the aid of the ¹³C NMR spectrum given in the practical instructions, decide which is the correct formula. <u>Mark</u> **one** of the two boxes below to indicate which you have chosen:

C₁₈H₁₈O₄:

C₁₈H₁₆O₃:

g) <u>Calculate</u> the percentage yield of purified product, based on the formula you gave for its structure.

Task 2

13% of the total

Analysis of a Copper(II) Complex

2a	2b	2c	2d	2e	2 f	2g	2h	Total
15	1	2	15	1	2	4	4	44

Titration to determine the proportion of copper ions:

	Mass of complex / g	Volume of EDTA solution needed / cm ³	Mark box if using this data in the calculation for part (a)
Sample 1			
Sample 2			
Sample 3			

a) <u>Calculate</u> the volume of EDTA solution needed to react completely with

0.100 g of complex.

b) <u>Give an equation</u> for the titration reaction:

c) <u>Calculate</u> the percentage by mass of copper in the sample:

Percentage by mass of copper:

Titration to determine the proportion of chloride ions:

	Mass of complex / g	Volume of silver nitrate solution needed / cm ³	Mark box if using this data in the calculation for part (d)
Sample 4			
Sample 5			
Sample 6			

d) <u>Calculate</u> the volume of silver nitrate solution needed to react completely with 0.200 g of complex.

e) <u>Give an equation</u> for the titration reaction:

f) <u>Calculate</u> the percentage by mass of chloride ions in the sample:

Percentage by mass of chloride ions:

g) <u>Mark</u> which element in the complex has the greatest percentage error in the determination of its proportion:

Cu CI O C H N

h) <u>Determine</u> the formula of the copper complex:

Formula:

Task 3

14% of the total

The critical micelle concentration of a surfactant

3a	3b	3c	Total
2	34	2	38

a) <u>Give</u> the concentration of the stock SDS solution you have made up:

b) <u>Record</u> your results in the table below and <u>plot</u>, on the graph paper provided, a suitable graph to determine the critical micelle concentration (CMC).

Volume of stock SDS solution / cm ³	Volume of H ₂ O / cm ³	c∕mmol dm ⁻³	σ / μS cm ⁻¹

STUDENT CODE:

c) <u>State</u> the concentration at which micelles begin to form (the critical micelle concentration):

STUDENT CODE:

Answer Booklet Page 13 / 11